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ABSTRACT

he analysis and identification of landslide-prone areas

are essential in minimizing the precarious impacts of

landslide hazards, which can result in fatalities,

damage to infrastructure, and destruction of natural

resources. This study was conducted to analyze the
landslide susceptibility of La Trinidad, Benguet by examining
the relationship between the historical landslide occurrences and
various factors (aspect, elevation, distance to rivers and roads,
land use and land cover (LULC), lithology, normalized
difference vegetation index (NDVI), precipitation, slope, and
soil texture) using logistic regression. Landslide susceptibility
map was divided into two categories: susceptible and not
susceptible, through the binary classification method. The
findings revealed that 6.06% of the total land area (463.54 ha)
were susceptible to landslides while 93.94% (7,181.44 ha) were
classified as not susceptible. The areas classified as susceptible
to landslides exhibited characteristics often associated with
human activity and development, such as a high population
density, extensive settlements, and significant infrastructure.
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This suggests that human-induced factors, particularly road
expansion and construction activities, contribute to slope
instability in these locations. The analysis identified distance to
road, slope, and NDVI as the most significant variables
influencing landslide susceptibility in the study area,
contributing 65.37%, 11.21%, and 8.01%, respectively. The
logistic regression model showed excellent discriminative
ability (ROC = 0.90) and suggests good model accuracy which
is better than random chance (TSS = 0.66). The evaluation
metrics indicated that the landslide susceptibility analysis was
effective and accurately classified landslide-susceptible areas
within the study area. The results of this study will provide
significant information, highlighting the importance of
integrating landslide susceptibility assessments to land-use
planning, sustainable development, and disaster risk reduction.

INTRODUCTION

Landslide is the downward movement of soil and rock materials
influenced by gravitational force and often triggered by heavy
rainfall, seismic activities, and human disturbances (Kalantar et
al. 2018; Cemiloglu et al. 2023; Wang et al. 2023; Yadav et al.
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2023). It is considered to be the most occurring hazard,
especially in the mountainous areas, which often results in loss
of lives and damage to infrastructures, crops, properties, and the
natural environment (Sujatha and Sridhar 2021; Yadav et al.
2023; Zhao and Chen 2023). According to the United Nations
Educational, Scientific, and Cultural Organization (UNESCO),
landslides are a significant global hazard that contributes to 14%
of total casualties (Froude and Petley 2018). Approximately $4
billion in losses and nearly 1,000 fatalities in a year are due to
landslides (Lee and Pradhan 2006).

Due to the increasing frequency and intensity of landslides
caused by different factors such as climate change, urbanization,
and development, landslide susceptibility analysis and
prediction have become significant for disaster risk reduction
management (DRRM), preparedness, and risk mitigation (Zhao
and Chen 2023; Chowdhury et al. 2024). Landslide
susceptibility analysis (LSA) is a crucial aspect of natural hazard
assessment. It involves several techniques including
geomorphological hazard mapping (Reichenbach et al. 2005),
heuristic methods, landslide inventories (Zhao and Chen 2023),
and statistical methods (Bui et al. 2011; Sujatha and Sridhar
2021; Cemiloglu et al. 2023; Wang et al. 2023). Among these
several techniques, statistical modeling plays a significant role
in landslide susceptibility analysis as it enables the prediction of
the probability of future landslide occurrence and the
identification of key factors affecting its occurrence. Statistical
modeling, particularly the logistic regression method (LR), is the
most popular and has been utilized by several researchers (Jade
and Sarkar 1993; Guzzetti et al. 1999; Sun et al. 2018; Sharma
et al. 2023; Chowdhury et al. 2024). The advantages of this
method include its ability to process limited and complex
datasets such as continuous and categorical data or their
combination, which allows the inclusion of different landslide
contributing factors in modeling landslide susceptibility.
Additionally, the results are easy to interpret since the outcome
is always binary which can be either categorized as susceptible
or not susceptible (Sun et al. 2018; Sujatha and Sridhar 2021;
Cemiloglu et al. 2023). It is also highlighted that LR is capable
of eliminating irrelevant variables which is significant in
producing a more reliable prediction. Furthermore, it can also
quantify the relative impact of the different variables which is
significant in understanding the causes and factors of the
landslide occurrence (Chowdhury et al. 2024).

Logistic regression is a data-driven technique used in predicting

environmental, geological, hydrological, and geomorphological
factors, which are usually called causative and triggering factors
(independent variables). Another crucial type of data required
for a data-driven technique in landslide analysis includes
historical landslide occurrence data, referring to the samples that
show the conditions under which landslides have occurred.
Additionally, it is essential to collect landslide absence data or
samples that represent the condition in which no landslides have
been documented. The importance of LR in LSA lies in its
effectiveness in handling complex, non-linear relationships
between causative and triggering factors and historical landslide
occurrences, which allows the development of probabilistic
maps that can assist the local government, in both urban and
rural areas, especially areas that are prone to landslide hazards,
in risk assessment, land-use planning, and hazard management.
Hence, this study was conducted to analyze the landslide
susceptibility of La Trinidad, Benguet, using the LR method.
Additionally, this study determined the variables primarily
influencing the occurrence of landslides.

MATERIALS AND METHODS

Study Site

La Trinidad, the capital of Benguet, has a total area of 7,644.98
ha constituting 2.7% of Benguet province and the most
populated municipality (Figure 1). It has a Type I Climate
Classification based on Corona System with a rainy season from
May to October and a dry season from November to April every
year (PAGASA n.d.). La Trinidad is characterized by steep
mountains, cliffs, and high terrain surrounding the center of the
municipality. Several creeks and major water bodies, including
the Balili River, flow through its landscape. It has an elevation
ranging from 500 to 1,700 meters above sea level (masl) and a
gentle to very steep slope. The rugged topography and unstable
geologic composition due to its proximity to fault systems and
variety of rock types presents the municipality as highly
susceptible to landslides (Carranza & Hale 2002; Potter 1974).
The soil type consists of gravelly loam, clay loam, silt loam, and
sandy loam. The existing land uses in the municipality include
residential, commercial, institutional, forest, agricultural, and
water bodies. Among these land uses, residential areas, followed
by commercial, account for the largest uses in the municipality,
which serves as the central business district in the province
(Office of Municipal Planning and Development 2021).
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Figure 1: Geographical location of La Trinidad, Benguet Province.
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Data Collection

Landslide Occurrences

In LSA, data on historical landslide occurrences is required. The
historical landslide records, including their spatial attributes,
covering the period between 2009 and 2024, were acquired from
the available records of the Municipal and Provincial Disaster
Risk Reduction and Management Office (MDRRMO &
PDRRMO) of La Trinidad and Benguet Province. There were
189 total landslide incidents recorded during this period, which
mostly occurred and were triggered by road cuts and heavy

rainfall brought by major typhoon events (Figure 2). These
incidents represent shallow landslides, characterized by surface-
level soil erosion, mudslides, and debris flows, often affecting
existing infrastructure like roads, riprap, footpaths, and
residential structures. The landslide occurrence data was
randomly divided into training and testing, where 70% (132
landslide points) were utilized for training the model, and 30%
(57 landslide points) were used for validation purposes.

120°32°24"E 120°3412"E

16°30'0"N

z
£

~
£
N
©

16°26'24"N

Legend: 3
=] Municipat Boqnt‘iéry ¢
A Landslide Océurrences

120°32°24"E 120°3412"E

120°36'0"E

120°36'0"E

120°37'48"E 120°39'36"E

16°30'0"N

16°28"12"N

16°26'24"N

120°37'48"E 120°39'36"E

Figure 2: Geographical location of the landslide occurrences in La Trinidad, Benguet showing recorded incidents from 2009-2024

Landslide susceptibility mapping is a binary classification where
landslide indices are categorized into two classes: landslide
occurrence and absence data. The historical landslide occurrence
data are available on the landslide inventory of the local
government units, while the landslide absence data is not
directly available and is often generated by estimating the
location and condition where no landslide has been recorded. In
this study, the landslide absence data (pseudo-absences) were
generated using the disk method, performed through the
statistical software R. The disk method uses the minimum-
maximum radius to randomly generate pseudo-absences within
a given distance from recorded occurrence points. The number
of pseudo-absences that can be generated varies depending on
the study area and the sampling method. In this study, to ensure
that the landscape in the study area is adequately represented, a
total of 10,000 pseudo-absence points were randomly generated,
where the maximum distance from the known landslide
occurrence point was set to 2,000 m.

Causative and Triggering Factors

Several factors contribute to the occurrence of landslides, and
one of the key steps in landslide analysis is the selection of
suitable causative and triggering factors. According to Ayalew
and Yamagishi (2005), there are no standard criteria for
selecting these variables. In this study, the selected factors
(Figure 3) were based on a comprehensive review of existing
literature, as well as the availability and relevance of the data to
landslide occurrence. The selection was guided by previous
research on landslide susceptibility analysis (Yesilnacar and
Topal 2005; Bui et al. 2011; Sun et al. 2018) and supported by
the specific characteristics of the study area. Factors such as
aspect, elevation, distance to rivers and roads, LULC, lithology,
NDVI, precipitation, slope, and soil texture (Table 1) were
chosen.

Table 1: The various factors used and their corresponding source of data, year, and resolution.

Data Sources Year Spatial Resolution
Elevation European Space Agency Copernicus Open Access Hub — 2015 30m x 30m
(https://dataspace.copernicus.eu/)
Aspect Generated through the elevation data 2015 30m x 30m
Slope Generated through the elevation data 2015 30m x 30m
Distance to Road Open Street Map (OSM) 2023 Sm x 5Sm
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Distance to River

National Mapping and Resource Information Authority 2023 Smx 5Sm

(NAMRIA)
Lithology Mines and Geosciences Bureau (MGB) — Cordillera 1990 Sm x Sm
Administrative Region (CAR)
Soil Texture Bureau of Soil and Water Management (BSWM) 2015 Smx 5Sm
LULC NAMRIA 2020 30m x 30m
NDVI Landsat 8 Operational Land Imager and Thermal Infrared 2024 30m x 30m
Sensor (OLI/TIRS)
Precipitation WorldClim (www.worldclim.org) 1970-2000 Smx 5m

Elevation is the measure of distance above sea level, and
technically, areas in the higher elevations are susceptible to
landslides. This variable is often used in assessing landslide
susceptibility by several researchers (Lee and Evangelista 2005;
Chowdhury et al. 2024). The digital elevation model (DEM) of
the study area, with a 30 m resolution, was utilized to generate
the aspect and slope data. Aspect represents the slope direction,
which affects vegetation growth, surface evaporation rate,
concentration of soil moisture, and temperature. Aspect is also
significant and has previously been integrated into determining
landslide susceptibility by some researchers (Sharma et al. 2023;
Chowdhury et al. 2024). On the other hand, the slope refers to
the steepness of the Earth’s surface and is measured as an angle.
In the study area, the slope ranges from 0°-65°, or gentle to very
steep slopes. Technically, as the slope angle increases, the shear
stress also increases (Khan & Wang 2021).

The distance to roads is also often considered a primary factor
due to its influence on landslides where several incidents may
occur on the road due to the changes in the natural conditions of
the slopes brought by road constructions that affect shear
strength and directly influence slope failure (Wang et al. 2023).
The distance to the rivers is also an important parameter that
influences the stability of a slope by saturating the base, leading
to slope failure (Kouhpeima et al. 2017; Kalantar et al. 2018;
Sun et al. 2018).

Landslides are also directly associated with rock properties,
considering their slope-forming properties and characteristics,
which directly affect the strength and permeability of the slope
(Kalantar et al. 2018; Kouhpeima et al. 2017; Hong et al. 2016).
Soil texture refers to the varying sizes of mineral particles,
which influence the soil's porosity and structure. This variation
is usually categorized into sand, silt, and clay. Soils rich in clay
exhibit resistance to detachment, whereas sandy soils are more
susceptible to detachment, thus compromising the stability of
soil aggregates (Phogat et al. 2015). The study of Sharma et al.
(2023) on landslide analysis included soil texture as a
contributing factor to landslide occurrence. The different soil
textures present in the study area include clay, loam, clay loam,
gravelly loam, sandy loam, silt loam, and rough mountainous
land.

NDVI determines the extent of vegetation with values ranging
from -1 to 1, whereas a negative value indicates the presence of
water bodies, a low value indicates barren land and built-up
areas, and a value closer to one indicates the presence of denser
vegetation. In this study, the NDVI was computed through the
raster calculator in the Geographic Information System (GIS)
software, using 30 x 30 m imagery from the archives of Landsat
8 OLI/TIRS.

NDVI was calculated using the following equation (Lee 2005):

NDVI = NIR —R
~ NIR+R
where NDVI is the normalized difference vegetation index, NIR

is near infrared of the electromagnetic spectrum, and R is the red
portion of the electromagnetic spectrum (Sun et al. 2018).

Precipitation or rainfall is another significant triggering factor of
landslide occurrence (Bui et al. 2011; Sun et al. 2018). Rainfall,
especially heavy rainfall, can trigger landslides by saturating the
soil, which reduces its shear strength.
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Figure 3: Ten (10) causative factors used landslide susceptibility
analysis of La Trinidad, Benguet. A) aspect; B) elevation; C) LULC;
D) lithology; E) NDVI; F) precipitation; G) distance to river; H) distance
to road; 1) slope; J) soil texture.

Ambiong, Beckel, and Longlong were always identified as the
most highly susceptible areas due to their steep, cut slopes and
vulnerable settlements. Ambiong consistently experiences
numerous landslide and soil erosion incidents, particularly
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affecting houses located downslope of slides and areas where
riprap has eroded. Balili and Stonehill areas face moderate
susceptibility due to steep slopes and highly fractured rock
formations with solution-enlarged cavities, experiencing mud
and rock flows along the Halsema Highway that damage
infrastructure like footbridge foundations. Longlong in Puguis is
explicitly identified as prone to rain-induced landslides due to
slope material saturation, with incidents affecting schools and
homes. Tawang exhibits critical erosion zones with unstable
boulders on mountain slopes, inadequate drainage systems, and
recurring issues of eroded riprap and damaged footpaths across
various puroks like Banig and Dengsi. Road-related
vulnerabilities are prominent in Alapang, Alno, and Wangal,
where road cuts, eroded shoulders, and collapsed riprap affect
major provincial roads, sometimes making them impassable and
forcing road closures. Heavy rainfall from typhoons (Ineng,
Lando, Fabian, Maring) and monsoon events consistently trigger
these geological hazards, causing damage ranging from eroded
slopes and mudslides to major structural threats, power
disruptions, and forced evacuations in residential areas. Shilan
suffers frequent riprap erosion and road slides that cause total
damage to residences, demonstrating that settlements and
infrastructure near road cuts, river systems, and areas with poor
drainage bear the greatest risk across these communities
(MDRRMC 2023). The incident report of these events was used
as a basis for selecting the causative factors to develop the
model.

Multicollinearity Test

In LSA using LR, the absence of collinearity among the factors
is required. Multicollinearity among factors affects the model
performance and can lead to inaccurate prediction results. This
test is conducted to ensure that each variable contains unique
information and does not explain the same information as other
variables. This technique is significant for selecting the most
appropriate factor to be used in the landslide susceptibility
analysis, which leads to reliable results. Hence, a
multicollinearity test using the variance inflation factor (VIF)
was conducted to assess the multicollinearity among the 10
factors that were considered. A VIF value greater than or equal
to 10 signifies multicollinearity; thus, variables with a higher
value must be excluded in the analysis and modeling
(Chowdhury et al. 2024).

Landslide Susceptibility Analysis
LR was utilized to analyze the landslide susceptibility of La
Trinidad, Benguet, based on the different dependent and
independent variables. The dependent variable is the landslide
data, which includes the occurrence (1) and absence (0), while
the independent variables refer to the 10 causatives and
triggering factors. In LR analysis, the predicted value is always
binary, which falls between 1 (presence) and 0 (absence). The
simplified method for modeling the probability is described
using the following equation:
1
P= (1 +exp?)
where P is the probability of occurrence with an estimated value
that varies between 0 and 1, and z is the assumed linear
combination of the independent variables:
7 =PBotBix1tB2x2tBsxstBixi
where pi reflects the contributions of the independent variables,
po is the constant coefficient, Xi denotes the number of
independent variables (Chowdhury et al. 2024). LSA was
conducted using the R statistical software, comprising the
following steps: performing LSA using LR based on the
generalized linear model (glm) function; calculating the
contribution of each causative and triggering factor.

Variable importance and contribution were calculated using a
permutation-based randomization method that works by
systematically evaluating how much each predictor variable
contributes to model predictions. One variable was taken at a
time and shuffled (randomized) its values across all observations
while keeping all other variables unchanged. The model then
made predictions using this dataset with the randomized
variable, and these predictions were compared to the original
predictions made with unshuffled data by calculating the
Pearson's correlation between them. The final importance score
is computed as one minus this correlation value, meaning that
higher scores indicate greater variable importance. A score of 0
indicates the variable has no influence on model predictions,
while higher values reflect increasing importance.

Validation of Model Performance

The result of the landslide susceptibility was validated using
receiver operating characteristics (ROC) and true skill statistics
(TSS) metrics. These evaluation metrics are utilized by several
researchers in landslide map validation. The ROC is one of the
statistical index-based techniques in evaluating model
performance by comparing sensitivity against the false positive
rate. The ROC probability curve shows the true-positive rate or
sensitivity (ratio of the correctly classified landslide points) on
the vertical axis and the false-positive rate or 1-specificity
(landslide absence cells that are incorrectly classified as present)
on the horizontal axis using a two-dimensional graph (Sharma
et al. 2023).

The area under the ROC (AUROC) is the numerical value of the
summary of the information under the ROC curve, which is used
to estimate the effectiveness of the model in classifying and
predicting the landslide susceptibility in the study area. The
AUROC values were classified into five classes: low (0.5-0.6),
moderate (0.6-0.7), good (0.7-0.8), very good (0.8-0.9), and
excellent (0.9-1) (Yesilnacar and Topal 2005) while AUROC
values from 0.0-0.49 are considered not acceptable.

On the other hand, the TSS was used to measure the reliability
of the classification. This method is similar to Kappa statistics,
which considers the omission and commission errors (Allouche
et al. 2006). The TSS is calculated using the equation

TSS = TPR — FPR,

where TSS is the True Skill Statistics, TPR is the True Positive
Rate, and FPR is the False Positive Rate. The value of the TSS
ranges from 0 to 1 and was classified into: poor or not acceptable
(0.0-0.49), useful (0.5-0.8), and good to excellent (0.8 and
above) categories (Coetzee et al. 2009).

RESULTS AND DISCUSSION

Multicollinearity Test

The different causative and triggering factors were evaluated for
multicollinearity. The result showed that the soil texture and
distance to road factors, with VIF values of 3.35 and 1.07, had
the highest and lowest VIF scores, respectively (Table 2). The
result of the multicollinearity test is consistent with the study of
Chowdhury et al. (2024), where the distance to road factor also
had the lowest VIF value.

The VIF values of all the factors are less than 10, indicating that
there is no multicollinearity among the factors considered. A low
VIF value ensures the reliability of the model, and the influence
of each factor on landslide occurrence can be accurately
represented. Therefore, the 10 causative and triggering factors
considered were utilized in the landslide susceptibility analysis.
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Table 2: Multicollinearity test of the causative and triggering factors.

Variables VIF Scores
Soil texture 3.35
Elevation 2.34
Precipitation 2.07
Lithology 1.80
Distance to river 1.40
Land use and land cover 1.20
Slope 1.19
Aspect 1.17
NDVI 1.16
Distance to road 1.07

Landslide Susceptibility Analysis

The landslide susceptibility map of the study area (Figure 4) was
divided into two categories, susceptible and not susceptible,
based on the binary classification. Based on the result, 463.54
ha, corresponding to 6.06% of the total land area, is susceptible
to landslides. On the other hand, 7,181.44 ha, which corresponds
t0 93.94%, falls within the not susceptible classification. Among
the areas classified as susceptible to landslides, most of these are
observed in the area of Beckel, Puguis, Ambiong, Shilan, and
Poblacion, with a corresponding area of 83.03 ha, 46.50 ha,
45.61 ha, 42.23 ha, and 38.31 ha, respectively. On the other
hand, Betag, with a susceptible area of 0.29 ha, has the lowest
landslide susceptibility since it is located in an area with the
lowest elevation and flat terrain.

Areas identified as landslide-susceptible exhibit similar patterns,
such as high settlement and infrastructure density, and are
intensively modified for agriculture and other economic
activities. In addition, human-induced factors, particularly road
expansion and construction activities, have also been identified
as significant contributors to slope instability.
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Figure 4: Landslide susceptibility of La Trinidad, Benguet using logistic regression

Results showed that, among the 10 independent variables, the
distance to road, slope, and NDVI, with a percentage
contribution of 65.37%, 11.21%, and 8.01%, respectively, are
observed as the most influential variables that highly contribute
to the landslide susceptibility of the study area (Table 3). Based
on the result, highly susceptible areas are mostly observed
within a distance range of 0—400 m from the road. In addition,
the closer to the road, the higher the risk of a landslide. This
signifies that structures, industrial and residential buildings
within that distance range are prone to landslides and must be
inspected and evaluated for relocation or suspension of activities
and operations. The result is consistent with the study of
Sekarlangit et al. (2022) where the distance to road was one of
the leading contributors to landslide occurrence since the areas
exposed along the road cuts are particularly susceptible to slides
and soil erosion. Upon examining the collected historical
landslide occurrences, a considerable number occurred near the
road networks. This only indicates that human activities such as
the construction of linear infrastructure, including roads and
highways, reduce shear resistance, which causes slope

instability in the municipality. Roads in the study area are the
center of socio-economic activities and also serve as entry and
exit points, connecting other municipalities in the region.
However, its susceptibility to landslides poses a threat to
infrastructure and settlements near the road networks.
Additionally, it can cause significant disruptions to
transportation, which can affect local economies and access to
essential services.

Table 3: Percentage contribution of the various factors to the
occurrence of landslides.

Factors Contribution (%)
Distance to road 65.37
Slope 11.21
NDVI 8.01
Precipitation 7.20
Aspect 6.80
LULC 5.79
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Elevation 5.15
Lithology 3.33
Soil 0.40
Distance to river 0.27

Furthermore, results showed that a slope of 0 — 10° indicates a
low probability of landslide occurrence, while a slope between
10°-40° is highly vulnerable to landslide, having a susceptible
area of 458 ha. However, areas in the municipality with a slope
angle of 40° and above (Balili, Poblacion, and Betag) have a low
frequency of landslide occurrence due to the existence of
vegetation cover with NDVI ranging from 0.429-0.598,
signifying the presence of dense vegetation cover. Vegetation
cover modifies the stability of the slope by increasing shear
resistance. Moreover, NDVI, or the measure of vegetation
extent, made notable contributions to the occurrence of
landslides in the study area, where the landslide susceptibility
increases as the NDVI values decrease. Based on the result, the
areas with an NDVI value ranging from 0-0.353, characterized
by water bodies, barren land, built-up areas, and sparse
vegetation, are mostly susceptible to landslides. The result
indicates that high vegetation cover reduces the probability of
landslide occurrence since vegetation acts as a crucial element
in stabilizing slopes by intercepting rainfall impact, reducing
soil saturation, and anchoring soil with its root systems (Murgia
et al. 2024). Several research on LSA (Sun et al. 2018) revealed
that NDVI significantly influences landslide occurrences, which
must be considered in the analysis, especially in areas with
varying vegetation densities. With regards to lithology,
limestone presents moderate risk through chemical dissolution
along joints, while sandstones create high susceptibility due to
weak shales interbedded with stronger rocks, leading to
differential weathering and failure along contacts. Marine
clastics and pyroclastics pose the highest risk, as these poorly
consolidated materials contain clay minerals and volcanic
components that weaken significantly when saturated. In
contrast, quartz diorite intrusive rocks have low susceptibility
when fresh but become highly prone to landslides when
weathered, as feldspar alteration creates weak clay layers that
can slide over the underlying competent bedrock (Hadji et al.
2019; Geiser & Sansone 1981; Henriquet et al. 2020).

The occurrence of landslides in these landslide-prone areas can
have devastating impacts, including loss of lives, destruction of
infrastructure like roads and settlements, damage to agricultural
areas, and environmental degradation, which often leads to
socio-economic setbacks. Therefore, this study emphasized the
use of the LR method, a statistical modeling technique, in
developing landslide susceptibility maps and understanding the
environmental aspects that cause slope instability. The result
provides preliminary information needed to facilitate decision-
making and develop mitigation strategies, which are significant
in reducing risks associated with landslides. It will also help the
local government and policy makers in land use planning and in
identifying suitable areas for future developments. Moreover,
the result serves as a baseline in developing an early warning
system (EWS), which is crucial in strengthening response and
preparedness in mitigating landslide risks by providing warnings
and information on its probability of occurrence and its potential
impacts.

Evaluation of Model Performance

The accuracy and validity of the model were evaluated using the
ROC and TSS metrics. Based on the result of the evaluation, the
calculated value of AUROC is 0.90, while the TSS has a
generated value of 0.66, corresponding to 90% and 66%,
respectively. The obtained values of the two evaluation metrics
signify that the LR method effectively and correctly classified

the outcomes of the LSA in the municipality of La Trinidad. The
evaluation of the result showed that there is a good to
satisfactory agreement between the generated landslide
susceptibility map and the observed or collected historical
landslide points in the study area. The result indicates that the
LR method can accurately predict and classify LSA.

To further validate the result, a field validation, with the
assistance of the MDRRMO, was conducted to compare the
landslide susceptibility map with the observed landslide
occurrences. During the validation, it was observed that most of
the recorded landslide occurrences fell within the areas
classified as highly vulnerable, mostly near and within the road
networks. According to the record of the MDRRMO, the
barangays identified as highly wvulnerable have been
experiencing numerous landslide occurrences, which caused
loss of lives and destruction of houses, roads, and farmlands,
leading to negative impacts on the socio-economic aspects of the
municipality. The field validation further confirms the reliability
of the LR method for landslide susceptibility mapping. The
findings of this study are significant, emphasizing the need to
consider landslide susceptibility —assessment into the
municipality’s land-use planning, sustainable development,
disaster risk reduction management, and decision-making
process.

CONCLUSION

The findings revealed that 463.54 ha (6.06%) is susceptible to
landslides, while 7,181.44 ha (93.94%) is classified as not
susceptible. Susceptible areas are specifically found in barangay
Beckel, Puguis, Ambiong, Shilan, and Poblacion. These areas
are characterized by high density of population, settlement, and
infrastructure. Additionally, three (3) factors, namely distance to
road, slope, and NDVI, made notable contribution to the
occurrence of landslide. Based on the result, 0400 m distance
from the road exhibits high susceptibility to landslide
occurrences, due to the construction and advancement of road
networks. Moreover, areas with a slope of 10-40 are susceptible
to landslide due to the steepness of the slopes. The absence of
vegetation cover also has a significant impact on landslide
occurrence in the study area, wherein areas with low NDVI
values, characterized by water bodies, barren land, and built-up
areas, are mostly susceptible to landslides. Values of the
AUROC and TSS metrics, 0.90 and 0.66, respectively, indicate
the reliability and accuracy of logistic regression in predicting
and analyzing landslide susceptibility in the study area. The
result of the analysis provides significant information,
highlighting the importance of integrating landslide
susceptibility map, in land-use planning, developing sustainable
development initiatives, and in crafting policies and developing
appropriate measures to minimize landslide risk and potential
impact on the community.
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