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ABSTRACT 
 
 

he analysis and identification of landslide-prone areas 
are essential in minimizing the precarious impacts of 
landslide hazards, which can result in fatalities, 
damage to infrastructure, and destruction of natural 
resources. This study was conducted to analyze the 

landslide susceptibility of La Trinidad, Benguet by examining 
the relationship between the historical landslide occurrences and 
various factors (aspect, elevation, distance to rivers and roads, 
land use and land cover (LULC), lithology, normalized 
difference vegetation index (NDVI), precipitation, slope, and 
soil texture) using logistic regression. Landslide susceptibility 
map was divided into two categories: susceptible and not 
susceptible, through the binary classification method. The 
findings revealed that 6.06% of the total land area (463.54 ha) 
were susceptible to landslides while 93.94% (7,181.44 ha) were 
classified as not susceptible. The areas classified as susceptible 
to landslides exhibited characteristics often associated with 
human activity and development, such as a high population 
density, extensive settlements, and significant infrastructure. 

This suggests that human-induced factors, particularly road 
expansion and construction activities, contribute to slope 
instability in these locations. The analysis identified distance to 
road, slope, and NDVI as the most significant variables 
influencing landslide susceptibility in the study area, 
contributing 65.37%, 11.21%, and 8.01%, respectively. The 
logistic regression model showed excellent discriminative 
ability (ROC = 0.90) and suggests good model accuracy which 
is better than random chance (TSS = 0.66). The evaluation 
metrics indicated that the landslide susceptibility analysis was 
effective and accurately classified landslide-susceptible areas 
within the study area. The results of this study will provide 
significant information, highlighting the importance of 
integrating landslide susceptibility assessments to land-use 
planning, sustainable development, and disaster risk reduction. 
 
 
INTRODUCTION 
 
Landslide is the downward movement of soil and rock materials 
influenced by gravitational force and often triggered by heavy 
rainfall, seismic activities, and human disturbances (Kalantar et 
al. 2018; Cemiloglu et al. 2023; Wang et al. 2023; Yadav et al. 
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2023). It is considered to be the most occurring hazard, 
especially in the mountainous areas, which often results in loss 
of lives and damage to infrastructures, crops, properties, and the 
natural environment (Sujatha and Sridhar 2021; Yadav et al. 
2023; Zhao and Chen 2023). According to the United Nations 
Educational, Scientific, and Cultural Organization (UNESCO), 
landslides are a significant global hazard that contributes to 14% 
of total casualties (Froude and Petley 2018). Approximately $4 
billion in losses and nearly 1,000 fatalities in a year are due to 
landslides (Lee and Pradhan 2006). 
 
Due to the increasing frequency and intensity of landslides 
caused by different factors such as climate change, urbanization, 
and development, landslide susceptibility analysis and 
prediction have become significant for disaster risk reduction 
management (DRRM), preparedness, and risk mitigation (Zhao 
and Chen 2023; Chowdhury et al. 2024). Landslide 
susceptibility analysis (LSA) is a crucial aspect of natural hazard 
assessment. It involves several techniques including 
geomorphological hazard mapping (Reichenbach et al. 2005), 
heuristic methods, landslide inventories (Zhao and Chen 2023), 
and statistical methods (Bui et al. 2011; Sujatha and Sridhar 
2021; Cemiloglu et al. 2023; Wang et al. 2023). Among these 
several techniques, statistical modeling plays a significant role 
in landslide susceptibility analysis as it enables the prediction of 
the probability of future landslide occurrence and the 
identification of key factors affecting its occurrence. Statistical 
modeling, particularly the logistic regression method (LR), is the 
most popular and has been utilized by several researchers (Jade 
and Sarkar 1993; Guzzetti et al. 1999; Sun et al. 2018; Sharma 
et al. 2023; Chowdhury et al. 2024). The advantages of this 
method include its ability to process limited and complex 
datasets such as continuous and categorical data or their 
combination, which allows the inclusion of different landslide 
contributing factors in modeling landslide susceptibility. 
Additionally, the results are easy to interpret since the outcome 
is always binary which can be either categorized as susceptible 
or not susceptible (Sun et al. 2018; Sujatha and Sridhar 2021; 
Cemiloglu et al. 2023). It is also highlighted that LR is capable 
of eliminating irrelevant variables which is significant in 
producing a more reliable prediction. Furthermore, it can also 
quantify the relative impact of the different variables which is 
significant in understanding the causes and factors of the 
landslide occurrence (Chowdhury et al. 2024).  
 
Logistic regression is a data-driven technique used in predicting 
areas that are prone to landslides based on various 

environmental, geological, hydrological, and geomorphological 
factors, which are usually called causative and triggering factors 
(independent variables). Another crucial type of data required 
for a data-driven technique in landslide analysis includes 
historical landslide occurrence data, referring to the samples that 
show the conditions under which landslides have occurred. 
Additionally, it is essential to collect landslide absence data or 
samples that represent the condition in which no landslides have 
been documented. The importance of LR in LSA lies in its 
effectiveness in handling complex, non-linear relationships 
between causative and triggering factors and historical landslide 
occurrences, which allows the development of probabilistic 
maps that can assist the local government, in both urban and 
rural areas, especially areas that are prone to landslide hazards, 
in risk assessment, land-use planning, and hazard management. 
Hence, this study was conducted to analyze the landslide 
susceptibility of La Trinidad, Benguet, using the LR method. 
Additionally, this study determined the variables primarily 
influencing the occurrence of landslides.  
 
 
MATERIALS AND METHODS 
 
Study Site 
La Trinidad, the capital of Benguet, has a total area of 7,644.98 
ha constituting 2.7% of Benguet province and the most 
populated municipality (Figure 1). It has a Type I Climate 
Classification based on Corona System with a rainy season from 
May to October and a dry season from November to April every 
year (PAGASA n.d.). La Trinidad is characterized by steep 
mountains, cliffs, and high terrain surrounding the center of the 
municipality. Several creeks and major water bodies, including 
the Balili River, flow through its landscape. It has an elevation 
ranging from 500 to 1,700 meters above sea level (masl) and a 
gentle to very steep slope. The rugged topography and unstable 
geologic composition due to its proximity to fault systems and 
variety of rock types presents the municipality as highly 
susceptible to landslides (Carranza & Hale 2002; Potter 1974). 
The soil type consists of gravelly loam, clay loam, silt loam, and 
sandy loam. The existing land uses in the municipality include 
residential, commercial, institutional, forest, agricultural, and 
water bodies. Among these land uses, residential areas, followed 
by commercial, account for the largest uses in the municipality, 
which serves as the central business district in the province 
(Office of Municipal Planning and Development 2021).  
 

 
Figure 1: Geographical location of La Trinidad, Benguet Province. 
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Data Collection 
Landslide Occurrences 
In LSA, data on historical landslide occurrences is required. The 
historical landslide records, including their spatial attributes, 
covering the period between 2009 and 2024, were acquired from 
the available records of the Municipal and Provincial Disaster 
Risk Reduction and Management Office (MDRRMO & 
PDRRMO) of La Trinidad and Benguet Province. There were 
189 total landslide incidents recorded during this period, which 
mostly occurred and were triggered by road cuts and heavy 

rainfall brought by major typhoon events (Figure 2). These 
incidents represent shallow landslides, characterized by surface-
level soil erosion, mudslides, and debris flows, often affecting 
existing infrastructure like roads, riprap, footpaths, and 
residential structures. The landslide occurrence data was 
randomly divided into training and testing, where 70% (132 
landslide points) were utilized for training the model, and 30% 
(57 landslide points) were used for validation purposes.  
 

 
Figure 2: Geographical location of the landslide occurrences in La Trinidad, Benguet showing recorded incidents from 2009-2024

Landslide susceptibility mapping is a binary classification where 
landslide indices are categorized into two classes: landslide 
occurrence and absence data. The historical landslide occurrence 
data are available on the landslide inventory of the local 
government units, while the landslide absence data is not 
directly available and is often generated by estimating the 
location and condition where no landslide has been recorded. In 
this study, the landslide absence data (pseudo-absences) were 
generated using the disk method, performed through the 
statistical software R. The disk method uses the minimum-
maximum radius to randomly generate pseudo-absences within 
a given distance from recorded occurrence points. The number 
of pseudo-absences that can be generated varies depending on 
the study area and the sampling method. In this study, to ensure 
that the landscape in the study area is adequately represented, a 
total of 10,000 pseudo-absence points were randomly generated, 
where the maximum distance from the known landslide 
occurrence point was set to 2,000 m.  

Causative and Triggering Factors 
Several factors contribute to the occurrence of landslides, and 
one of the key steps in landslide analysis is the selection of 
suitable causative and triggering factors. According to Ayalew 
and Yamagishi (2005), there are no standard criteria for 
selecting these variables. In this study, the selected factors 
(Figure 3) were based on a comprehensive review of existing 
literature, as well as the availability and relevance of the data to 
landslide occurrence. The selection was guided by previous 
research on landslide susceptibility analysis (Yesilnacar and 
Topal 2005; Bui et al. 2011; Sun et al. 2018) and supported by 
the specific characteristics of the study area. Factors such as 
aspect, elevation, distance to rivers and roads, LULC, lithology, 
NDVI, precipitation, slope, and soil texture (Table 1) were 
chosen. 
 

Table 1: The various factors used and their corresponding source of data, year, and resolution. 

Data Sources Year Spatial Resolution 

Elevation European Space Agency Copernicus Open Access Hub –
(https://dataspace.copernicus.eu/) 

2015 30m x 30m 

Aspect Generated through the elevation data 2015 30m x 30m 

Slope Generated through the elevation data 2015 30m x 30m 

Distance to Road Open Street Map (OSM) 2023 5m x 5m 

https://dataspace.copernicus.eu/
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Distance to River National Mapping and Resource Information Authority 
(NAMRIA) 

2023 5m x 5m 

Lithology Mines and Geosciences Bureau (MGB) – Cordillera 
Administrative Region (CAR) 

1990 5m x 5m 

Soil Texture Bureau of Soil and Water Management (BSWM) 2015 5m x 5m 

LULC NAMRIA 2020 30m x 30m 

NDVI Landsat 8 Operational Land Imager and Thermal Infrared 
Sensor (OLI/TIRS) 

2024 30m x 30m 

Precipitation WorldClim (www.worldclim.org)  1970-2000 5m x 5m 

 
Elevation is the measure of distance above sea level, and 
technically, areas in the higher elevations are susceptible to 
landslides. This variable is often used in assessing landslide 
susceptibility by several researchers (Lee and Evangelista 2005; 
Chowdhury et al. 2024). The digital elevation model (DEM) of 
the study area, with a 30 m resolution, was utilized to generate 
the aspect and slope data. Aspect represents the slope direction, 
which affects vegetation growth, surface evaporation rate, 
concentration of soil moisture, and temperature. Aspect is also 
significant and has previously been integrated into determining 
landslide susceptibility by some researchers (Sharma et al. 2023; 
Chowdhury et al. 2024). On the other hand, the slope refers to 
the steepness of the Earth’s surface and is measured as an angle. 
In the study area, the slope ranges from 0°–65°, or gentle to very 
steep slopes. Technically, as the slope angle increases, the shear 
stress also increases (Khan & Wang 2021).  
 
The distance to roads is also often considered a primary factor 
due to its influence on landslides where several incidents may 
occur on the road due to the changes in the natural conditions of 
the slopes brought by road constructions that affect shear 
strength and directly influence slope failure (Wang et al. 2023). 
The distance to the rivers is also an important parameter that 
influences the stability of a slope by saturating the base, leading 
to slope failure (Kouhpeima et al. 2017; Kalantar et al. 2018; 
Sun et al. 2018).  
 
Landslides are also directly associated with rock properties, 
considering their slope-forming properties and characteristics, 
which directly affect the strength and permeability of the slope 
(Kalantar et al. 2018; Kouhpeima et al. 2017; Hong et al. 2016). 
Soil texture refers to the varying sizes of mineral particles, 
which influence the soil's porosity and structure. This variation 
is usually categorized into sand, silt, and clay. Soils rich in clay 
exhibit resistance to detachment, whereas sandy soils are more 
susceptible to detachment, thus compromising the stability of 
soil aggregates (Phogat et al. 2015). The study of Sharma et al. 
(2023) on landslide analysis included soil texture as a 
contributing factor to landslide occurrence. The different soil 
textures present in the study area include clay, loam, clay loam, 
gravelly loam, sandy loam, silt loam, and rough mountainous 
land.  
 
NDVI determines the extent of vegetation with values ranging 
from -1 to 1, whereas a negative value indicates the presence of 
water bodies, a low value indicates barren land and built-up 
areas, and a value closer to one indicates the presence of denser 
vegetation. In this study, the NDVI was computed through the 
raster calculator in the Geographic Information System (GIS) 
software, using 30 x 30 m imagery from the archives of Landsat 
8 OLI/TIRS.  

 
NDVI was calculated using the following equation (Lee 2005): 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝑅 

where NDVI is the normalized difference vegetation index, NIR 
is near infrared of the electromagnetic spectrum, and R is the red 
portion of the electromagnetic spectrum (Sun et al. 2018).  
 
Precipitation or rainfall is another significant triggering factor of 
landslide occurrence (Bui et al. 2011; Sun et al. 2018). Rainfall, 
especially heavy rainfall, can trigger landslides by saturating the 
soil, which reduces its shear strength.  
 

 
Figure 3: Ten (10) causative factors used landslide susceptibility 
analysis of La Trinidad, Benguet. A) aspect; B) elevation; C) LULC; 
D) lithology; E) NDVI; F) precipitation; G) distance to river; H) distance 
to road; I) slope; J) soil texture. 

Ambiong, Beckel, and Longlong were always identified as the 
most highly susceptible areas due to their steep, cut slopes and 
vulnerable settlements. Ambiong consistently experiences 
numerous landslide and soil erosion incidents, particularly 

http://www.worldclim.org/
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affecting houses located downslope of slides and areas where 
riprap has eroded. Balili and Stonehill areas face moderate 
susceptibility due to steep slopes and highly fractured rock 
formations with solution-enlarged cavities, experiencing mud 
and rock flows along the Halsema Highway that damage 
infrastructure like footbridge foundations. Longlong in Puguis is 
explicitly identified as prone to rain-induced landslides due to 
slope material saturation, with incidents affecting schools and 
homes. Tawang exhibits critical erosion zones with unstable 
boulders on mountain slopes, inadequate drainage systems, and 
recurring issues of eroded riprap and damaged footpaths across 
various puroks like Banig and Dengsi. Road-related 
vulnerabilities are prominent in Alapang, Alno, and Wangal, 
where road cuts, eroded shoulders, and collapsed riprap affect 
major provincial roads, sometimes making them impassable and 
forcing road closures. Heavy rainfall from typhoons (Ineng, 
Lando, Fabian, Maring) and monsoon events consistently trigger 
these geological hazards, causing damage ranging from eroded 
slopes and mudslides to major structural threats, power 
disruptions, and forced evacuations in residential areas. Shilan 
suffers frequent riprap erosion and road slides that cause total 
damage to residences, demonstrating that settlements and 
infrastructure near road cuts, river systems, and areas with poor 
drainage bear the greatest risk across these communities 
(MDRRMC 2023). The incident report of these events was used 
as a basis for selecting the causative factors to develop the 
model. 
 
Multicollinearity Test 
In LSA using LR, the absence of collinearity among the factors 
is required. Multicollinearity among factors affects the model 
performance and can lead to inaccurate prediction results. This 
test is conducted to ensure that each variable contains unique 
information and does not explain the same information as other 
variables. This technique is significant for selecting the most 
appropriate factor to be used in the landslide susceptibility 
analysis, which leads to reliable results. Hence, a 
multicollinearity test using the variance inflation factor (VIF) 
was conducted to assess the multicollinearity among the 10 
factors that were considered. A VIF value greater than or equal 
to 10 signifies multicollinearity; thus, variables with a higher 
value must be excluded in the analysis and modeling 
(Chowdhury et al. 2024).  
 
Landslide Susceptibility Analysis 
LR was utilized to analyze the landslide susceptibility of La 
Trinidad, Benguet, based on the different dependent and 
independent variables. The dependent variable is the landslide 
data, which includes the occurrence (1) and absence (0), while 
the independent variables refer to the 10 causatives and 
triggering factors. In LR analysis, the predicted value is always 
binary, which falls between 1 (presence) and 0 (absence). The 
simplified method for modeling the probability is described 
using the following equation:  

𝑃 =
1

(1 + 𝑒𝑥𝑝!") 

where P is the probability of occurrence with an estimated value 
that varies between 0 and 1, and z is the assumed linear 
combination of the independent variables:  

𝑧 =#!$#"#"$#$#$$#%#%$⋯#&#& 
where βi reflects the contributions of the independent variables, 
βo is the constant coefficient, Xi denotes the number of 
independent variables (Chowdhury et al. 2024). LSA was 
conducted using the R statistical software, comprising the 
following steps: performing LSA using LR based on the 
generalized linear model (glm) function; calculating the 
contribution of each causative and triggering factor. 
 

Variable importance and contribution were calculated using a 
permutation-based randomization method that works by 
systematically evaluating how much each predictor variable 
contributes to model predictions. One variable was taken at a 
time and shuffled (randomized) its values across all observations 
while keeping all other variables unchanged. The model then 
made predictions using this dataset with the randomized 
variable, and these predictions were compared to the original 
predictions made with unshuffled data by calculating the 
Pearson's correlation between them. The final importance score 
is computed as one minus this correlation value, meaning that 
higher scores indicate greater variable importance. A score of 0 
indicates the variable has no influence on model predictions, 
while higher values reflect increasing importance. 
 
Validation of Model Performance 
The result of the landslide susceptibility was validated using 
receiver operating characteristics (ROC) and true skill statistics 
(TSS) metrics. These evaluation metrics are utilized by several 
researchers in landslide map validation. The ROC is one of the 
statistical index-based techniques in evaluating model 
performance by comparing sensitivity against the false positive 
rate. The ROC probability curve shows the true-positive rate or 
sensitivity (ratio of the correctly classified landslide points) on 
the vertical axis and the false-positive rate or 1-specificity 
(landslide absence cells that are incorrectly classified as present) 
on the horizontal axis using a two-dimensional graph (Sharma 
et al. 2023).  
 
The area under the ROC (AUROC) is the numerical value of the 
summary of the information under the ROC curve, which is used 
to estimate the effectiveness of the model in classifying and 
predicting the landslide susceptibility in the study area. The 
AUROC values were classified into five classes: low (0.5–0.6), 
moderate (0.6–0.7), good (0.7–0.8), very good (0.8–0.9), and 
excellent (0.9–1) (Yesilnacar and Topal 2005) while  AUROC 
values from 0.0–0.49 are considered not acceptable. 
 
On the other hand, the TSS was used to measure the reliability 
of the classification. This method is similar to Kappa statistics, 
which considers the omission and commission errors (Allouche 
et al. 2006). The TSS is calculated using the equation  
 

TSS = TPR − FPR, 
 
where TSS is the True Skill Statistics, TPR is the True Positive 
Rate, and FPR is the False Positive Rate. The value of the TSS 
ranges from 0 to 1 and was classified into: poor or not acceptable 
(0.0–0.49), useful (0.5–0.8), and good to excellent (0.8 and 
above) categories (Coetzee et al. 2009).  
 
 
RESULTS AND DISCUSSION 
 
Multicollinearity Test 
The different causative and triggering factors were evaluated for 
multicollinearity. The result showed that the soil texture and 
distance to road factors, with VIF values of 3.35 and 1.07, had 
the highest and lowest VIF scores, respectively (Table 2). The 
result of the multicollinearity test is consistent with the study of 
Chowdhury et al. (2024), where the distance to road factor also 
had the lowest VIF value.  
 
The VIF values of all the factors are less than 10, indicating that 
there is no multicollinearity among the factors considered. A low 
VIF value ensures the reliability of the model, and the influence 
of each factor on landslide occurrence can be accurately 
represented. Therefore, the 10 causative and triggering factors 
considered were utilized in the landslide susceptibility analysis.  
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Table 2: Multicollinearity test of the causative and triggering factors. 

Variables VIF Scores 

Soil texture 3.35 

Elevation  2.34 

Precipitation 2.07 

Lithology 1.80 

Distance to river 1.40 

Land use and land cover 1.20 

Slope 1.19 

Aspect 1.17 

NDVI 1.16 

Distance to road 1.07 

 
Landslide Susceptibility Analysis 
The landslide susceptibility map of the study area (Figure 4) was 
divided into two categories, susceptible and not susceptible, 
based on the binary classification. Based on the result, 463.54 
ha, corresponding to 6.06% of the total land area, is susceptible 
to landslides. On the other hand, 7,181.44 ha, which corresponds 
to 93.94%, falls within the not susceptible classification. Among 
the areas classified as susceptible to landslides, most of these are 
observed in the area of Beckel, Puguis, Ambiong, Shilan, and 
Poblacion, with a corresponding area of 83.03 ha, 46.50 ha, 
45.61 ha, 42.23 ha, and 38.31 ha, respectively. On the other 
hand, Betag, with a susceptible area of 0.29 ha, has the lowest 
landslide susceptibility since it is located in an area with the 
lowest elevation and flat terrain.  
 
Areas identified as landslide-susceptible exhibit similar patterns, 
such as high settlement and infrastructure density, and are 
intensively modified for agriculture and other economic 
activities. In addition, human-induced factors, particularly road 
expansion and construction activities, have also been identified 
as significant contributors to slope instability. 
 

 
Figure 4: Landslide susceptibility of La Trinidad, Benguet using logistic regression

Results showed that, among the 10 independent variables, the 
distance to road, slope, and NDVI, with a percentage 
contribution of 65.37%, 11.21%, and 8.01%, respectively, are 
observed as the most influential variables that highly contribute 
to the landslide susceptibility of the study area (Table 3). Based 
on the result, highly susceptible areas are mostly observed 
within a distance range of 0–400 m from the road. In addition, 
the closer to the road, the higher the risk of a landslide. This 
signifies that structures, industrial and residential buildings 
within that distance range are prone to landslides and must be 
inspected and evaluated for relocation or suspension of activities 
and operations. The result is consistent with the study of 
Sekarlangit et al. (2022) where the distance to road was one of 
the leading contributors to landslide occurrence since the areas 
exposed along the road cuts are particularly susceptible to slides 
and soil erosion. Upon examining the collected historical 
landslide occurrences, a considerable number occurred near the 
road networks. This only indicates that human activities such as 
the construction of linear infrastructure, including roads and 
highways, reduce shear resistance, which causes slope 

instability in the municipality. Roads in the study area are the 
center of socio-economic activities and also serve as entry and 
exit points, connecting other municipalities in the region. 
However, its susceptibility to landslides poses a threat to 
infrastructure and settlements near the road networks. 
Additionally, it can cause significant disruptions to 
transportation, which can affect local economies and access to 
essential services.  
 
Table 3: Percentage contribution of the various factors to the 
occurrence of landslides. 

Factors Contribution (%) 
Distance to road 65.37 

Slope 11.21 
NDVI 8.01 

Precipitation 7.20 
Aspect 6.80 
LULC 5.79 
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Elevation 5.15 
Lithology 3.33 

Soil 0.40 
Distance to river 0.27 

 
Furthermore, results showed that a slope of 0 – 10° indicates a 
low probability of landslide occurrence, while a slope between 
10°–40° is highly vulnerable to landslide, having a susceptible 
area of 458 ha. However, areas in the municipality with a slope 
angle of 40° and above (Balili, Poblacion, and Betag) have a low 
frequency of landslide occurrence due to the existence of 
vegetation cover with NDVI ranging from 0.429–0.598, 
signifying the presence of dense vegetation cover. Vegetation 
cover modifies the stability of the slope by increasing shear 
resistance. Moreover, NDVI, or the measure of vegetation 
extent, made notable contributions to the occurrence of 
landslides in the study area, where the landslide susceptibility 
increases as the NDVI values decrease. Based on the result, the 
areas with an NDVI value ranging from 0–0.353, characterized 
by water bodies, barren land, built-up areas, and sparse 
vegetation, are mostly susceptible to landslides. The result 
indicates that high vegetation cover reduces the probability of 
landslide occurrence since vegetation acts as a crucial element 
in stabilizing slopes by intercepting rainfall impact, reducing 
soil saturation, and anchoring soil with its root systems (Murgia 
et al. 2024). Several research on LSA (Sun et al. 2018) revealed 
that NDVI significantly influences landslide occurrences, which 
must be considered in the analysis, especially in areas with 
varying vegetation densities. With regards to lithology, 
limestone presents moderate risk through chemical dissolution 
along joints, while sandstones create high susceptibility due to 
weak shales interbedded with stronger rocks, leading to 
differential weathering and failure along contacts. Marine 
clastics and pyroclastics pose the highest risk, as these poorly 
consolidated materials contain clay minerals and volcanic 
components that weaken significantly when saturated. In 
contrast, quartz diorite intrusive rocks have low susceptibility 
when fresh but become highly prone to landslides when 
weathered, as feldspar alteration creates weak clay layers that 
can slide over the underlying competent bedrock (Hadji et al. 
2019; Geiser & Sansone 1981; Henriquet et al. 2020). 
 
The occurrence of landslides in these landslide-prone areas can 
have devastating impacts, including loss of lives, destruction of 
infrastructure like roads and settlements, damage to agricultural 
areas, and environmental degradation, which often leads to 
socio-economic setbacks. Therefore, this study emphasized the 
use of the LR method, a statistical modeling technique, in 
developing landslide susceptibility maps and understanding the 
environmental aspects that cause slope instability. The result 
provides preliminary information needed to facilitate decision-
making and develop mitigation strategies, which are significant 
in reducing risks associated with landslides. It will also help the 
local government and policy makers in land use planning and in 
identifying suitable areas for future developments. Moreover, 
the result serves as a baseline in developing an early warning 
system (EWS), which is crucial in strengthening response and 
preparedness in mitigating landslide risks by providing warnings 
and information on its probability of occurrence and its potential 
impacts.  
 
Evaluation of Model Performance 
The accuracy and validity of the model were evaluated using the 
ROC and TSS metrics. Based on the result of the evaluation, the 
calculated value of AUROC is 0.90, while the TSS has a 
generated value of 0.66, corresponding to 90% and 66%, 
respectively. The obtained values of the two evaluation metrics 
signify that the LR method effectively and correctly classified 

the outcomes of the LSA in the municipality of La Trinidad. The 
evaluation of the result showed that there is a good to 
satisfactory agreement between the generated landslide 
susceptibility map and the observed or collected historical 
landslide points in the study area. The result indicates that the 
LR method can accurately predict and classify LSA.  
 
To further validate the result, a field validation, with the 
assistance of the MDRRMO, was conducted to compare the 
landslide susceptibility map with the observed landslide 
occurrences. During the validation, it was observed that most of 
the recorded landslide occurrences fell within the areas 
classified as highly vulnerable, mostly near and within the road 
networks. According to the record of the MDRRMO, the 
barangays identified as highly vulnerable have been 
experiencing numerous landslide occurrences, which caused 
loss of lives and destruction of houses, roads, and farmlands, 
leading to negative impacts on the socio-economic aspects of the 
municipality. The field validation further confirms the reliability 
of the LR method for landslide susceptibility mapping. The 
findings of this study are significant, emphasizing the need to 
consider landslide susceptibility assessment into the 
municipality’s land-use planning, sustainable development, 
disaster risk reduction management, and decision-making 
process.  
 
 
CONCLUSION 
 
The findings revealed that 463.54 ha (6.06%) is susceptible to 
landslides, while 7,181.44 ha (93.94%) is classified as not 
susceptible. Susceptible areas are specifically found in barangay 
Beckel, Puguis, Ambiong, Shilan, and Poblacion. These areas 
are characterized by high density of population, settlement, and 
infrastructure. Additionally, three (3) factors, namely distance to 
road, slope, and NDVI, made notable contribution to the 
occurrence of landslide. Based on the result, 0–400 m distance 
from the road exhibits high susceptibility to landslide 
occurrences, due to the construction and advancement of road 
networks. Moreover, areas with a slope of 10–40̊ are susceptible 
to landslide due to the steepness of the slopes. The absence of 
vegetation cover also has a significant impact on landslide 
occurrence in the study area, wherein areas with low NDVI 
values, characterized by water bodies, barren land, and built-up 
areas, are mostly susceptible to landslides. Values of the 
AUROC and TSS metrics, 0.90 and 0.66, respectively, indicate 
the reliability and accuracy of logistic regression in predicting 
and analyzing landslide susceptibility in the study area. The 
result of the analysis provides significant information, 
highlighting the importance of integrating landslide 
susceptibility map, in land-use planning, developing sustainable 
development initiatives, and in crafting policies and developing 
appropriate measures to minimize landslide risk and potential 
impact on the community. 
 
 
ACKNOWLEDGMENT 
 
This study is part of the project titled “Landslide Susceptibility 
Analysis, Monitoring, Mapping, and Early Warning Systems for 
Selected Areas in the Cordillera Administrative Region” funded 
by the Department of Science and Technology (DOST) and 
monitored by the Philippine Council for Agriculture, Aquatic 
and Natural Resources Research and Development 
(PCAARRD). The authors would like to acknowledge the 
Municipal and Provincial Local Government Unit (M/PLGU) 
and Disaster Risk Reduction Management Office (DRRMO) of 
La Trinidad and Benguet Province for their invaluable 
contribution and support during the conduct of the study.  



 
                                                                         SciEnggJ                      Vol. 18 | No. 02 | 2025 302 

CONFLICT OF INTEREST 
 
The authors declare no conflict of interest.  
 
 
CONTRIBUTIONS OF INDIVIDUAL AUTHORS 
 
G.P.T. was involved in the original draft of the manuscript and, 
together with M.N.T.L., contributed to the literature review and 
data analysis. J.P.M.P. contributed to the research methodology 
and interpretation of results. R.I.C.L. led the conceptualization 
and methodology, project leadership, secured funding, and 
performed a critical review of the manuscript. D.M. coordinated 
project activities. R.I.C.L., K.A.L., L.J.T., and Q.A.G. 
supervised the project. K.A.L, L.J.T, Q.A.G, J.P.M.P, and 
M.N.T.L were involved in the review of the manuscript, while 
R.I.C.L, J.P.M.P, Q.A.G, and M.N.T.L contributed to editing of 
revisions. G.P.T., M.N.T.L., D.M., and Q.A.G. were involved in 
data collection. 
 
 
REFERENCES 
 
Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the 

accuracy of species distribution models: Prevalence, kappa, 
and the true skill statistic (TSS). Journal of Applied Ecology, 
43(6), 1223–1232. https://doi.org/10.1111/j.1365-
2664.2006.01214.x 

 
Ayalew L, Yamagishi H. The application of GIS-based logistic 

regression for landslide susceptibility mapping in the Kakuda-
Yahiko Mountains, Central Japan. Geomorphology 2005; 65: 
15-31. https://doi.org/10.1016/j.geomorph.2004.06.010  

 
Bui DT, Lofman O, Revhaug I, Dick O. Landslide susceptibility 

analysis in the Hoa Binh province of Vietnam using statistical 
index and logistic regression. Nat. Hazards 2011; 59: 1413-
1444. http://dx.doi.org/10.1007/s11069-011-9844-2  

 
Carranza, E. J. M., & Hale, M. (2002). Where Are Porphyry 

Copper Deposits Spatially Localized? A Case Study in 
Benguet Province, Philippines. Natural Resources Research, 
11(1), 45–59. https://doi.org/10.1023/A:1014287720379 

 
Cemiloglu A, Zhu L, Mohammednour AB, Azarafza M, 

Nanehkaran YA. Landslide Susceptibility Assessment for 
Maragheh County, Iran, Using the Logistic Regression 
Algorithm. Land. 2023; 12(1397): 1-20. 
https://doi.org/10.3390/land12071397  

 
Chowdhury S, Rahman N, Sheikh S, Sayeid A, Mahmud KH, 

Hafsa B. GIS-based landslide susceptibility mapping using 
logistic regression, random forest, and decision and regression 
tree models in Chattogram District, Bangladesh. Heliyon 
2024; 10: 1-19. https://doi.org/10.1016/j.heliyon.2023.e23424  

 
Coetzee BW, Robertson MP, Erasmus BF, Van Rensburg BJ, 

Thuiller W. Ensemble models predict Important Bird Areas in 
southern Africa will become less effective for conserving 
endemic birds under climate change. Global Ecol. Biogeogr. 
2009; 18(6): 701-710. https://doi.org/10.1111/j.1466-
8238.2009.00485.x 

 
Froude MJ, Petley DN. Global fatal landslide occurrence from 

2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018; 18:2161-
2181. https://doi.org/10.5194/nhess-18-2161-2018  

 
Geiser, P. A., & Sansone, S. (1981). Joints, microfractures, and 

the formation of solution cleavage in limestone. Geology, 

9(6), 280–285. https://doi.org/10.1130/0091-
7613(1981)9<280:JMATFO>2.0.CO;2 

 
Guzzetti F, Carrara A, Cardinali M, Reichenbach P. Landslide 

hazard evaluation: a review of current techniques and their 
application in a multi-scale study, Central Italy. 
Geomorphology 1999; 31: 181-216. 
https://doi.org/10.1016/S0169-555X(99)00078-1  

 
Hadji, F., Marok, A., & Mokhtar-samet, A. (2019). Miocene 

sediment mineralogy of the lower Chelif basin (NW Algeria): 
implications for weathering and provenance. Turkish Journal 
of Earth Sciences, 28(1), 85–102. https://doi.org/10.3906/yer-
1802-24 

 
Henriquet, M., Dominguez, S., Barreca, G., Malavieille, J., & 

Monaco, C. (2020). Structural and tectono-stratigraphic 
review of the Sicilian orogen and new insights from analogue 
modeling. Earth-Science Reviews, 208, 103257. 
https://doi.org/10.1016/j.earscirev.2020.103257 

 
Hong H, Naghibi SA, Pourghasemi HR, Pradhan B. GIS-based 

landslide spatial modeling in Ganzhou City, China. Arab. J. 
Geosci 2016; 9: 1-26. http://dx.doi.org/10.1007/s12517-015-
2094-y  

 
Jade S, Sarkar S. Statistical models for slope instability 

classification. Engineering Geology 1993; 36:91-98. 
https://doi.org/10.1016/0013-7952(93)90021-4  

 
Kalantar B, Pradhan B, Naghibi SA, Motevalli A, Mansor S. 

Assessment of the effects of training data selection on the 
landslide susceptibility mapping: a comparison between 
support vector machine (SVM), logistic regression (LR) and 
artificial neural networks (ANN). Geomat. Nat. Hazards Risk 
2018; 9(1): 49-69. 
http://dx.doi.org/10.1080/19475705.2017.1407368  

 
Khan, M. I., & Wang, S. (2021). Slope Stability Analysis to 

Correlate Shear Strength with Slope Angle and Shear Stress 
by Considering Saturated and Unsaturated Seismic 
Conditions. Applied Sciences, 11(10), Article 10. 
https://doi.org/10.3390/app11104568 

 
Kouhpeima A, Feiznia S, Ahmadi H, Moghadamnia AR. 

Landslide susceptibility mapping using logistic regression 
analysis in Latyan Catchment. Desert 2017; 22(1): 85-95. 

 
Lee S, Evangelista DG. Landslide susceptibility mapping using 

probability and statistics models in Baguio City, Philippines. 
In ISPRS 31st International Symposium on Remote Sensing 
of Environment, Saint Petersburg, Russia. 2005; 20: 4. 

 
Lee S, Pradhan B. Probabilistic landslide hazards and risk 

mapping on Penang Island, Malaysia. J. Earth Syst. Sci. 2006; 
115: 661-672. http://dx.doi.org/10.1007/s12040-006-0004-0  

 
Lee S. Application of logistic regression model and its validation 

for landslide susceptibility mapping using GIS and remote 
sensing data. Int. J. Remote Sens 2005; 26(7): 1477-1491. 
http://dx.doi.org/10.1080/01431160412331331012  

 
Murgia, I., Vitali, A., Giadrossich, F., Tonelli, E., Baglioni, L., 

Cohen, D., Schwarz, M., & Urbinati, C. (2024). Effects of 
Land Cover Changes on Shallow Landslide Susceptibility 
Using SlideforMAP Software (Mt. Nerone, Italy). Land, 
13(10), Article 10. https://doi.org/10.3390/land13101575 

 
Phogat VK, Tomar VS, Dahiya R. Soil physical properties. In: 

Rattan RK, Katyal JC, Sarkar AKA, Bhattacharyya T, 

https://doi.org/10.1016/j.geomorph.2004.06.010
http://dx.doi.org/10.1007/s11069-011-9844-2
https://doi.org/10.3390/land12071397
https://doi.org/10.1016/j.heliyon.2023.e23424
https://doi.org/10.1111/j.1466-8238.2009.00485.x
https://doi.org/10.1111/j.1466-8238.2009.00485.x
https://doi.org/10.5194/nhess-18-2161-2018
https://doi.org/10.1016/S0169-555X(99)00078-1
http://dx.doi.org/10.1007/s12517-015-2094-y
http://dx.doi.org/10.1007/s12517-015-2094-y
https://doi.org/10.1016/0013-7952(93)90021-4
http://dx.doi.org/10.1080/19475705.2017.1407368
http://dx.doi.org/10.1007/s12040-006-0004-0
http://dx.doi.org/10.1080/01431160412331331012


 
Vol. 18 | No. 02 | 2025                  SciEnggJ  

  
303 

Tarafdar JC, Kukal SS, eds. Soil Science: An introduction. 
Indian Society of Soil Science 2015; 135-171. 

 
Potter, H. C. (1974). The geology of the western part of the 

Northern range of Trinidad. http://etheses.dur.ac.uk/8148/ 
 
Reichenbach P, Galli M, Cardinali M, Guzzetti F, Ardizzone F. 

Geomorphological mapping to assess landslide risk: concepts, 
methods, and applications in the Umbria region of central 
Italy. In: Glade T, Anderson M, Crozier MJ, eds. Landslide 
Hazard and Risk 2005; 429-468. 
http://dx.doi.org/10.1002/9780470012659.ch15  

 
Sekarlangit N, Fathani TF, Wilopo W. Landslide susceptibility 

mapping of Menoreh mountain using logistic regression. J. 
Appl. Geol. 2022; 7(1): 51-63. 
http://dx.doi.org/10.22146/jag.72067  

 
Sharma M, Upadhyay RK, Tripathi G, Kishore N, Shakyaa, 

Meraj G, Thakur SN. Assessing landslide susceptibility along 
India’s National Highway 58: a comprehensive approach 
integrating remote sensing, GIS, and logistic regression 
analysis. Conservation 2023; 3(3): 444-459. 
https://doi.org/10.3390/conservation3030030  

 
Sujatha ER, Sridhar V. Landslide susceptibility analysis: a 

logistic regression model case study in Coonoor, India. 
Hydrology 2021; 8(1): 1-18. 
https://doi.org/10.3390/hydrology8010041  

 
Sun X, Chen J, Bao Y, Han X, Zhan J, Peng W. Landslide 

Susceptibility mapping using logistic regression analysis 
along the Jinsha River and its tributaries close to Derong and 
Deqin County, Southwestern China. ISPRS Int. J. Geo-Inf. 
2018; 7(11): 438. https://doi.org/10.3390/ijgi7110438  

 
Wang H, Xu J, Tan S, Zhou J. Landslide susceptibility 

evaluation based on a couple informative–logistic regression 
model—Shuangbai County as an example. Sustainability 
2023; 15(12449): 1-17. https://doi.org/10.3390/su151612449  

 
Yadav M, Pal SK, Singh PK, Gupta N. Landslide susceptibility 

zonation mapping using frequency ratio, information value 
model, and logistic regression model: a case study of Kohima 
District in Nagaland, India. In: Thambidurai P, Singh TN, eds. 
Landslides: detection, prediction, and monitoring. Springer 
2023; 333-363. http://dx.doi.org/10.1007/978-3-031-23859-
8_17  

 
Yesilnacar E, Topal T. Landslide susceptibility mapping: a 

comparison of logistic regression and neural networks 
methods in a medium scale study, Hendek region (Turkey). 
Engineering Geology 2005; 79: 251-266. 
https://doi.org/10.1016/j.enggeo.2005.02.002  

 
Zhao Z, Chen J. A robust discretization method of factor 

screening for landslide susceptibility mapping using 
convolution neural network, random forest, and logistic 
regression models. Int. J. Digit. Earth 2023; 16(1): 408-429. 
http://dx.doi.org/10.1080/17538947.2023.2174192  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://dx.doi.org/10.1002/9780470012659.ch15
http://dx.doi.org/10.22146/jag.72067
https://doi.org/10.3390/conservation3030030
https://doi.org/10.3390/hydrology8010041
https://doi.org/10.3390/ijgi7110438
https://doi.org/10.3390/su151612449
http://dx.doi.org/10.1007/978-3-031-23859-8_17
http://dx.doi.org/10.1007/978-3-031-23859-8_17
https://doi.org/10.1016/j.enggeo.2005.02.002
http://dx.doi.org/10.1080/17538947.2023.2174192

